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Abstract: The simplicity and computational efficiency of back-projection formulae have 
made them a popular choice in optoacoustic tomography. Nonetheless, exact back-projection 
formulae exist for only a small set of tomographic problems. This limitation is overcome by 
algebraic algorithms, but at the cost of higher numerical complexity. In this paper, we present 
a generic algebraic framework for calculating back-projection operators in optoacoustic 
tomography. We demonstrate our approach in a two-dimensional optoacoustic-tomography 
example and show that once the algebraic back-projection operator has been found, it 
achieves a comparable run time to that of the conventional back-projection algorithm, but 
with the superior image quality of algebraic methods. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Tomographic inversion problems, which pertain to the determination of 2D or 3D objects 
from their projections, are common in many imaging fields [1–8]. Most often, the projection 
data may be described by the Radon transform, or a modification thereof. While the Radon 
transform is most commonly known in the context of X-ray computerized tomography (X-ray 
CT) [1–3] it also appears in single-photon emission computed tomography (SPECT) [4], 
positron emission tomography (PET) [8], optical projection tomography (OPT) [5], and 
ultrasound tomography (UT) [6]. In the field of optoacoustic tomography (OAT), often 
referred to as photoacoustic tomography (PAT) [7], as well as in other forms of 
thermoacoustic tomography (TAT) [9], a variation of the Radon transform is used in which 
the projections are taken not over lines, but rather over arcs or spherical shells [10]. 

In OAT, most inversion algorithms fall under one of the following categories [10]: 
analytical and optimization-based. In analytical algorithms, it is assumed that the projection 
data are represented by a continuous function and the solution is written as a set of analytical 
operations that are applied on that function. Known examples of that approach are back-
projection (BP) algorithms [11–15] and Fourier-based methods [16,17]. While analytical 
algorithms are often exact, approximate formulae are also very valuable when they are simple 
to compute [11]. Approximate BP formulae may also be used to improve the reconstruction 
quality in non-ideal imaging scenarios, as demonstrated in [18–20]. Since all analytical 
algorithms are eventually discretized and applied on non-ideal data, small errors in the 
analytical approximations do not necessarily have a practical importance [1]. In optimization-
based algorithms, the operation describing the projection operation is first discretized, and the 
inversion is performed for the discretized problem using tools from optimization theory. In 
the literature, such numerical algorithms are known by different names, which emphasize 
different aspects: algebraic reconstruction technique (ART) [21], model-based algorithms 
[22–25], and iterative algorithms [26]. 

The main advantages of analytical algorithms are the relative simplicity in which they 
may be programmed and the possibility for computationally efficient implementations. 
Analytical algorithms, and in particular BP algorithms, are especially attractive in the fields 
of X-ray CT and OAT, where they achieve high-quality reconstructions in various detection 
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geometries. Optimization-based techniques offer several advantages over analytical ones, 
which include exact compensation for additional effects in the projection formulae [27–30], 
compatibility with arbitrary detection geometries [10], higher tolerance to discretization 
errors and additive white noise [26,31], and the ability to use nonlinear tools from 
compressed-sensing theory such as sparsity in alternative representations [32] and least total 
variation [26,33]. The two major disadvantages of optimization-based techniques are the 
complexity of their implementation and their computational burden, especially when non-
linear regularizers are used [26,32,33]. In the case of 3D imaging, images with relatively 
modest resolutions may take several minutes to reconstruct when efficiently implemented on 
graphical processing units (GPUs) [34]. In the case of volumetric images with high voxel 
counts, analytical formulae, even when not exact, remain the most practical option for real-
time operation [35,36]. 

In this paper we develop a novel scheme for algebraic calculation of BP operators for 
OAT, which we term algebraic back-projection (ABP). While in standard algebraic 
inversion, one may invert the projection operator without making any assumptions on the 
nature of its inverse, in ABP it is assumed that the inverse operation consists of a single BP 
operator that is applied on all the projections. As we show in this work, this BP operation may 
be found by an iterative least-square minimization procedure. Thus, similarly to conventional 
BP formulae, ABPs are most appropriate when the scanning geometry contains symmetries, 
namely when the scanning surface is either translation or rotation invariant. 

To efficiently implement ABP it is required that the discretization of the image and 
detection surface share the same symmetry, i.e. share the same invariances. Accordingly, in 
our work, we chose 2D OAT with linear scanning as our geometry for the implementation of 
ABP, which is translation invariant and thus compatible with image discretization on a 
Cartesian grid. We demonstrated ABP in numerical simulations, and obtained that it produced 
inverse operations in which each point in the projection data is back-projected over an arc in 
the image – the hallmark of optoacoustic BP formulae. In our numerical simulations, the 
reconstructions of ABP achieved comparable quality to those obtained by the conventional 
model-based approach, but with the runtime of a BP formula. 

In contrast to BP formulae, there is no limitation in ABPs on the mathematical operation 
that describes the projections. Thus, one may include additional physical effects in the 
forward model, e.g. the effect of finite detector size in OAT [23], which may not always be 
accurately included in BP inversion formulae. For example, it has been previously shown that 
when focused detectors are used [27,28], e.g. in optoacoustic microscopy, approximate BP-
based inversion formulae involve significant reconstruction errors. For such geometries, BP 
operators found via ABP may offer the benefit of accurate reconstruction without the high 
computational burden of conventional algebraic reconstruction methods. 

The paper is organized as follows: In Section II, a short theoretical introduction to the 
tomographic problem in optoacoustic imaging is given. In Section III, the theory of ABP for 
the case of 2D OAT with linear scanning is developed. In Section IV, the performance of 
ABP is demonstrated in numerical simulations, and in Section V the results are discussed. 

2. Image reconstruction in OAT

In OAT, the image, denoted by ( )H r , represents the energy-deposition map in the tissue and 

is indicative of the optical absorption coefficient within the imaged specimen. The projection 
data relate to a set of 1D acoustic signals obtained at different positions of the ultrasound 
detector. The relation between the acoustic pressure ( , )p tr at a given position r and time 

instant t to the optoacoustic image ( )H r is often described by the following integral relation 

[10]: 
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where, Γ is the Grüneisen coefficient, c is the speed of sound in the medium, and t is time. 
The projection formula in Eq. (1) represents 3D integration (or projection) over a sphere with 
a radius of ct  whose origin is at r . In 2D problems in which it is assumed ( )H r is 

approximately confined to a plane, the integral in Eq. (1) is calculated over a circle. 
The set of acoustic signals ( , )p tr obtained over several locations represents the projection 

data used for reconstructing the image ( )H r . When ( )H r  has a finite support, and ( , )p tr is 

known over a closed surface that surrounds ( )H r , Eq. (1) may be uniquely inverted [10]. 

When the detection surface is either a sphere, a cylinder, or a plane, exact inversion may be 
achieved by the following BP formula [12]: 
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where ( ')rdΩ r is the solid angle element corresponding to the detector surface element 'dS  

when viewed from r , and is given by the following equation [11]: 
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where ( ')n r  denotes the outward-pointing normal of the integration surface at 'r . In Eq. (2), 

0Ω is the solid angle covered by the detection surface and is equal to 4π for spherical and

cylindrical surfaces, and to 2π for planar surfaces. When the detection surface is in the far 
field of the imaged object, Eq. (2) represents an approximate solution to the inverse problem 
for any closed-surface [11]. In that case, the first term in Eq. (2) may be omitted since 

( ', ) ( ', ).p t t t p t∂ ∂r r  

While Eq. (2), or variations thereof, is the most commonly used BP formula in 
optoacoustic tomography, it is important to note that numerous alternative formulae exist. For 
the case of infinite line detectors, Burgholzer et al. developed an exact 2D formula that was 
successfully tested on experimental data [13]. 2D formulae have also been developed for the 
case in which the optoacoustic image is restricted to a 2D surface [14,15]. However, these 
algorithms have not been tested on experimental data. 

In algebraic inversion algorithms, both the optoacoustic image and projection data are 
discretized and represented by vectors, which we denote by and h p  respectively. The 
discretization of Eq. (1) leads to the following matrix relation [11]: 

,p = Mh (4)

where M is the model matrix that represents the integral in Eq. (1). The calculation of M
may be performed via the interpolation of ( )H r at positions that are not on the discretization 

grid or by assuming that ( )H r is composed of atoms for which an analytical solution to Eq. 

(1) is known.
In principle, the inversion of Eq. (4) may be performed for any detection surface by

solving the following least squares minimization problem [25]: 

rec 2arg min || || ,−h = p Mh (5)

where 2|| || ,⋅  is the 2  norm. For a given signal p , the solution of Eq. (5) may be found by 

using the pseudo-inverse of M  [37–39], or by using iterative methods such as LSQR [40], 
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[41]. The advantage of the pseudo-inverse approach is that it provides a closed-form solution 
to Eq. (5), given by 

†
rech = M p (6)

where †M is the pseudo-inverse matrix, which is given by ( ) 1† T T−
=M M M M . Once †M

has been pre-calculated, the reconstruction may be efficiently performed by calculating the 
matrix-vector product in Eq. (6). However, the computational burden of the pre-calculation of 

†M has limited its use. In practice, Eq. (5) is solved by iterative methods that do not require 
pre-calculations and involve acceptable reconstruction times [41–43], albeit considerably 
slower than those achieved by BP methods. Both the pseudo-inverse and iterative solutions to 
Eq. (5) may be extended to include Tikhonov regularization that is required when the 
projection data is insufficient for an accurate reconstruction of the image on the pre-
prescribed grid, leading to an ill-conditioned matrixM . In the case of LSQR, regularization 
may also be performed by stopping the algorithm after a few iterations, before convergence is 
reached [40,42], and it is the method of regularization chosen in this work. A discussion on 
the numerical complexity of the different inversion methods is given in Sec. 3.2 and in the 
Conclusion. 

3. Algebraic calculation of back-projection operators

3.1 Theory 

In this section we develop the theory for ABP reconstruction in OAT for a rectangular grid 
with a linear scan of the acoustic detector. The parameters of the tomographic problem are 
depicted in Fig. 1(a). Briefly, our optoacoustic image is discretized over a linear 2D grid with 

xN  and yN pixels in the x and y directions, respectively, where the respective pixel sizes are

xΔ and yΔ . We assume that the projections are obtained over a linear scan in the x direction

with a step size of xΔ and pN  scanning positions, where p xN N> . In case the projection 

data is measured with a step size different than xΔ , it may be interpolated to a new grid with

a step size of xΔ . For each scanning position, the acoustic signal is discretized with tN  time 

points, where t yN N> . We further assume that the projections are acquired symmetrically 

with respect to the center of the image. For each position of the detector, the acoustic signal is 
discretized by the vector ip , where the entire projection data are given by the following 

equation: 
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Multiplying Eq. (9) by M and substituting Eq. (4), we obtain 

rec
ˆ .p = MKp (11)

An exact reconstruction would fulfill recp = p  for any vector p . Using Eq. (11), a kernel 

matrix that achieves an exact reconstruction should fulfill 

ˆ ,
p tN N=MK I (12)

where 
p tN NI  is an identity matrix of size p t p tN N N N× . To invert Eq. (12), the matrix K̂

needs to be represented in vector form without reoccurring entries. The details of the 
transformation of Eq. (12) into a standard algebraic equation composed of a matrix-vector 
product are given in the Appendix. 

3.2 Algorithmic implementation 

The implementation of ABP, based on the derivations in the Appendix, may be summarized 
by the following steps: 

1) Build the model matrix M for the geometry shown in Fig. 1(a).

2) Construct the matrix temp ( )0 ,
t p y K xN N N N N× −

 =  M M .

3) Set temps =M M . 

4) Execute 1pN − time the following operations: 

4.1) Shift circularly yN places to the left all the rows in tempM and save the 

result in tempM . 

4.2) Set 
temp

s

s

 
=  
 

M
M

M
. 

5) Build the matrix 2temp ( )
0 ,

x yx y K x
N NN N N N× −

 =   
I I .

6) Set tempv =I I . 

7) Execute 1pN −  time the following operations: 

7.1) Shift circularly yN places to the left all the rows in tempI  and save the 

result in temp .I  

7.2) Set 
temp

v

v

 
=  
 

I
I

I
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8) Set n = 1. 

9) Repeat tN  times: 

9.1) Set ,c nI as the nth vector in matrix vI . 

9.2) Find the vector ,c nK  that minimizes , , 2s c n c n−M K I . 

9.3) Set n = n + 1. 

10) Construct the kernel matrix K by concatenating all the column vectors found in step 
9, as shown in Eq. (A7a). 

11) Build the matrix matp according to Eq. (A10) and calculate mat mat=h Kp . 

12) Construct the solution by using Eq. (A11). 
 
Steps 1-10 in the algorithm are considered as pre-calculation and need to be performed 

only once for a given imaging geometry. In the pre-calculation, steps 1-7 involve merely 
rearrangement of matrix elements and their execution time is inconsequential when 
performed with sufficient random access memory (RAM) to store sM . The computational 

burden of ABP is mostly in step 9, which involves solving an optimization problem for the 
matrix sM . The reason for this high computational burden is that the matrix sM  has pN  

times more entries than the model matrix M . When solving Eq. (A9) in iterations, each 
iteration of LSQR involves a complexity proportional to calculating ,s c nM K  tN times, i.e. 

( )2 2
p t y KO N N N N . In contrast, step 11, which is individually performed for each dataset, 

involves a single matrix-matrix multiplication with a complexity of ( )t y K pO N N N N , i.e. 

t pN N  times less than a single iteration of step 9. Finally, step 12 involves summing pN  

back-projected images and thus has a complexity of ( )p y xO N N N . Since in most practical 

application, , ,x y pN N N  and tN  are of comparable magnitude, which we denote by N , the 

complexity of reconstructing an image with ABP is  ( )4O N  

While the pre-calculation in ABP is high, it is still lower than that of the pseudo-inverse 
approach (Eq. (6)). The matrix multiplication and inversion steps in Eq. (6) lead to a 

complexity of ( ) ( ) ( )2 2 3

p t x y p t x y x yO N N N N N N N N N N + +  
. In addition, in the case 

studied in this work, regularization is required since the projections are obtained with a 
limited view. As a result, the calculation of the pseudo-inverse matrix requires a Tikhonov 
regularization term to Eq. (5) [38], and to perform the inversion for several values of the 
parameter, thus leading to a total computational burden of 

( ) ( ) ( )2 2 3

p t x y p t x y x yO N N N N N N N N N N N N Nλ λ λ
 + +  

, where Nλ is the number of 

regularization parameters that are tested. 

4. Numerical results 

Our numerical simulations were performed for the 2D geometry illustrated in Fig. 1 with the 
parameters 81x yN N= =  and 0.025x yΔ = Δ =  cm, which correspond to an image size 2 × 2 

cm – a typical image size for optoacoustic tomography [43]. The detector was scanned over a 
line at a distance of 1.5 cm from the center of the image grid and acquired 325pN =  
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projections. We note that taking pN  to be considerably larger than xN is essential for 

achieving a good tomographic coverage of the object and reducing limited-view artifacts [42]. 
The speed of sound used in the simulations was c = 1500 m/s. The time vector over which the 
projections were calculated had 647tN =  point with a time step of / (3 )cΔ . To avoid using 

the same model for the forward and inverse problems, the model matrix used for 
reconstruction assumed acoustic signals with a time step of / (2 )cΔ , corresponding to 

431tN =  and a matrix size of 140075 × 6561, which occupied 156 MB when saved as a 

double sparse matrix in Matlab. Before reconstruction, the projections were interpolated from 
a / (3 )cΔ to a / (2 )cΔ time step. The simulations were performed without parallelization on a 

Lenovo ThinkStation P900 workstation with an Intel Xeon E5-2650 CPU operating at 2.3 
GHz, 256 GB of RAM, and one terabyte of hard drive space. 

To apply ABP, the matrices sM  and vI  in Eq. (17) were first calculated. The matrices 

had a size of 45524375 × 32805 and 45524375 × 431, and occupied 51 GB and 2.2 GB of 
RAM, respectively. Once the matrices had been calculated, the LSQR algorithm was used to 
solve the optimization problem in Eq. (A9). The first iteration of LSQR took approximately 
17 minutes for each time instant, and approximately 5 days for the entire matrixK . 
Subsequent iterations took only 45 seconds per iteration for a given time instant, or 
approximately 5 hours for the entire matrixK . While in previous studies on conventional 
algebraic inversion in OAT, it was found that 50 iterations were sufficient for the LSQR 
algorithm to converge [21,35], in the current study 120 iterations were performed to enable us 
to properly present the convergence rate of the algorithm. 

Figures 3(a)-3(c) show the back-projection operators obtained from K  for different times 
for the 120th iteration. As the figures shows, all the back-projections were on arcs and had a 
bipolar nature – the hallmarks of an optoacoustic back-projection operation (Eq. (2)). In Fig. 
3(d), we show a 1D slice of the back-projection image of Fig. 3(b) taken over the y axis at x = 
0 (solid curve). For comparison, Fig. 3(d) also shows the result obtained for the 1D slice 
when only a single iteration was used in the LSQR solution of Eq. (A9), in which K  was 
calculated (dashed curve). As the figure clearly shows, the slice from the 1st iteration is non-
zero only at two discrete time instants, at which the back-projected signal has opposite signs. 
This type of back-projected signal corresponds to a derivate operation, which is also the 
dominant operation in the 3D back-projection formula (Eq. (2)). As Fig. 3(d) shows, when 
more iterations were performed, a more elaborate back-projection structure emerged. We note 
that for all the time instants for which K  was calculated, the slices of the back-projected arcs 
had approximately the same temporal profile shown in Fig. 3(d). 

Figures 4(a)-4(c) show the three test images used to evaluate the performance of the ABP 
algorithm. The first image (Fig. 4(a)), composed of identical point-like circles, was chosen to 
test the reconstruction isotropy, whereas the second image (Fig. 4(b)), which contained circles 
of various sizes, was chosen to check how different scales in the image affected the 
reconstructions. In the third image (Fig. 4(c)), the reconstruction was tested for lines, which 
imitate the structure of blood vessels. Three methods were used to reconstruct the images: the 
BP formula of Eq. (2), algebraic inversion via the application of LSQR on Eq. (5), and the 
proposed ABP. 

The BP reconstructions are shown in Figs. 4(d)-4(f). Since Eq. (2) does not include the 
correct scaling factor for 2D images, its reconstructions were normalized. In Fig. 4(d), a good 
reconstruction is obtained, in which the major error is due to limited-view artifacts and 
smearing in the lateral direction. As expected, the artifacts become more significant the 
farther the objects are from the detector. In Fig. 4(e), an additional high-pass effect is 
observed. Indeed, it has been previously documented that when the BP formula in Eq. (2), 
which is exact for 3D, is applied on a 2D problem, the resulting reconstruction is high-passed 
compared to the originating image [25, 28]. The reconstructions in Fig. 4(d)-4(f) suffered 
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leading to a complexity of ( )4O N per iteration. In contrast, in ABP the total complexity per 

reconstructed image was ( )4O N . While the complexity of the BP algorithms is only ( )3O N  

[40], they involve more complex calculations per pixel than ABP in which the complexity 
relates to an efficiently implementable matrix-matrix multiplication, and as a result the run 
times were comparable in our numerical example. We note that future implementations of 
ABP may achieve a complexity of ( )3O N by utilizing the sparsity ofK , visible in Fig. 3, and 

performing the multiplications only for the significant elements of K . 
The pre-calculation of ABP involves a complexity of ( )5O N per iteration, whereas the 

pseudo-inverse approach has a complexity of ( )6O N . While efficient methods to calculate 

the pseudo-inverse have been developed using frequency-domain [45] and combined-space 
[46] representations, these methods did not reveal the underlying back-projection kernel in 
time domain shown in Fig. 3. In addition, in contrast to the current work, the methods in Refs 
[45,46] have not been tested in limited-view scenarios in which the angular coverage was 
smaller than 180°. 

In terms of reconstruction accuracy, the results obtained by ABP in our simulations were 
visually comparable to those obtained by standard algebraic inversion. While in the noiseless 
case the standard algebraic inversion obtained a lower reconstruction error for both images 
tested, it was more sensitive to noise than ABP. Thus, we conclude that the restriction in ABP 
to a single back-projection operator acts as a regularizer which suppresses noise at the price 
of moderate loss of image fidelity. In comparison to ABP and standard algebraic inversion, 
the analytical BP formula obtained the lowest image fidelity and was the most susceptible 
method to noise. We note that since the geometry studied involved a limited-tomographic 
view, the reconstruction errors were manifested also by negative image artifacts around the 
imaged objects and loss of tangential resolution [10]. 

Since ABP can achieve run times comparable to conventional BP formulae, while 
potentially offering better noise suppression, it may prove useful even in cases in which exact 
BP formulae exist. In addition, the generic framework of ABP may enable future 
implementations of this approach whose benefits go well beyond noise suppression. In 
principle, ABP may be applied to any linear tomographic problem, regardless of what 
operation is used to calculate the projection data. The performance of ABP will be determined 
by whether the discretization of the image and projection data have the same invariants. 
When they do, symmetry will require that the optimal back-projection operation be the same 
for all projections, making ABP equivalent to standard algebraic inversion. An example of 
such a scenario is cross-sectional imaging with ring detectors in OAT [7] with a polar image 
grid [45]. In 3D OAT, spherical or cylindrical grids may be used to develop ABP for 
spherical or cylindrical scans, respectively. A cylindrical grid may also be used for 
developing ABP for the recently introduced spiral scan [36]. When the projection data do not 
possess the symmetry of the image grid, ABP will find the best compromise, in the least-
squares sense, for the back-projection operator. 

One possible direction in which ABP may be generalized is the inclusion of complex 
projection operations, such as those found in practical OAT systems. For example, when the 
dimensions of the acoustic detector are larger than the acoustic wavelength, a spatial-
averaging operation is added to Eq. (1) [10]. This operation leads to projection formulae that 
exhibit a complex dependency on the detector geometry for which no exact BP formulae are 
known; a high-fidelity reconstruction in such cases necessitates the use of algebraic methods 
[27,28]. Two more effects that may be included in the OAT model are non-uniform 
illumination [29] and signal attenuation [27]. Since all the above-mentioned effects are 
identical for all the projections, their inclusion is not expected to affect the performance of 
ABP with respect to the performance of standard algebraic inversion. 
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One of the major challenges of extending ABP to other imaging scenarios is 
computational. In our work, for a 2D image with a modest pixel count of 81 × 81, the 
corresponding matrix sM  occupied 51 GB of RAM, requiring a workstation to implement the 

pre-calculations of the algorithm. In addition, 120 iterations performed to calculate K  
required approximately six weeks when executed on a single processor. Clearly, directly 
extending the algorithm to higher resolutions or 3D may lead to an impractical computational 
burden. However, this computational burden may be decreased by minimizing the 
redundancy in the over-determined inversion problem of Eq. (A9). For example, in the 
simulations discussed in this work, the number of equations in Eq. (A8) was over 3 orders of 
magnitude larger than the number of unknowns. Thus, it may be possible to drastically reduce 
the number of linear equations without sacrificing the accuracy of the reconstruction, 
facilitating the extension of ABP to images with higher pixel/voxel count. 

A different approach for accelerating the pre-calculation in ABP is to use parallel 

computing. Since the complexity of the pre-calculation stems from performing the tN  

independent calculations in Step 9 in Section IIIB, an improvement on the scale of tN  may 

be achieved by using a similar number of processors. Since the pre-calculation is performed 
only once for a given geometry, a computer cluster may be used to perform the pre-
calculation offline. Alternatively, parallelization may be achieved by using graphical 
processing units (GPUs). Although the matrix sM  is too large to be saved in the RAM of 

conventional GPUs, a more efficient representation of its entries may enable one to 
implement ABP on a GPU. In particular, the matrix sM  is not composed of unique entries, 

but rather contains pN  copies ofM , which in our example occupied only 156 MB. Thus, the 

algorithm may be implemented on a GPU with the matrix M  stored in the RAM of the GPU, 
with elements of the matrix sM  calculated on-the-fly in the iterative solution of Eq. (A9). 

Moreover, the matrix M  itself may be generated from an even smaller set of data, as 
previously demonstrated in [34,47]. Thus, ABP may be adapted for GPU implementation, 
which may enable its generalization to 3D. 

Finally, we note that the information found in the low-resolution BP operator may be 
extended to enable image reconstruction at arbitrary scales if an analytical operation is 
empirically fitted to the numerical BP operator. For example, the result of the first iteration of 
ABP found in our paper may be approximated by projecting on the arcs the temporal 
derivatives of the acoustic signals and applying an angle dependent weighting function on the 
arc. For higher iterations, the signal that is back-projected would need to be a convolution of 
the acoustic signal with the 1D BP response found in Fig. 3(d). This approach may enable 
finding empirical filtered back-projection formulae, analogues to those based on the Ram-Lak 
filter in computerized tomography [48]. 

Appendix 

In this Appendix, a detailed derivation of the algorithm in Sec. 3.2. is provided. As Eq. (10) 

shows, the matrix K̂  has a size of x y p tN N N N×  and is composed of 1K x pN N N= + −  sub-

matrices of size y tN N×  that appear at several positions in the combined matrix. Thus, 

although the matrix K̂  contains x y p tN N N N unknown elements, the number of its unique 

entries is only K y tN N N . In comparison, the number of linear equations in Eq. (12) is equal to 

the number of elements in 
p tN NI , i.e. ( )2

p tN N . Since 1p xN N>   and t yN N> , the number 

of equations vastly exceeds the number of unknowns. 
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To determine K̂  via algebraic inversion, Eq. (12) first needs to be rearranged in a way in 
which the matrix that contains the unknowns has only unique entries. As a first step, we break 

K̂ into pN  matrices ,1 , pv v NK K , each with the size of x y tN N N× , 

 

1 2 1

1 3 2

,1 ,2 , 1 ,

11 2

; ; ; ,

p p

p p

p p

x xp x p x

N N
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(A1) 

and the matrix 
p tN NI  into pN  matrices ,1 , pt t NI I  each with the size of p t tN N N× , 

 ,1 ,2 , 1 ,

0 0 0

0 00

; ; ,

00 0

0 0 0

t

t

p p

t

t

N

N

N N

N

N

ν ν ν ν−

       
       
       
       = = = =
       
       
       
       

I
I

I I I I
I

I

    (A2) 

where ,1 ,2 , 1 ,
ˆ [ , , , , ]

p pv v v N v N−=K K K K K  and ,1 ,2 , 1 ,[ , , , , ]
p t p pN N t t t N t N−=I I I I I . Replacing K̂

with a vertical arrangement of ,1 , pv v NK K , Eq. (12) may be rewritten as follows: 
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 (A3) 

We denote the block-diagonal matrices on the left-hand of Eq. (A3) by dM , and the vertical 

rearrangement of K̂  and 
p tN NI  in Eq. (A3) by vK  and vI , respectively. The dimensions of 

, ,d vM K and vI , are given by 2 , ,t p x y p x y p tN N N N N N N N N× × and 2 ,t p tN N N× respectively. 

The matrix vK  in Eq. (A3) is connected to the matrix K  in Eq. (8) by the following 

transformation: 
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We denote the first matrix on the right hand side of Eq. (A4) by sI . As Eq. (A4) shows, the 

size of the matrix sI is ( 1)x y K x y KN N N N N N− + × , or equivalently x y p y KN N N N N× . 

Substituting Eq. (A4) into Eq. (A3), we obtain: 

 ,S ν=M K I  (A5) 

where ,S d s=M M I  and has the following form: 
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    (A6) 

Thus, the matrix SM  has the size of 2
p t y KN N N N× and is composed of pN left-circular shifts 

of the matrix ( )0 ,
t p y K xN N N N N× −

 
 M . 

Similarly to Eq. (12), Eq. (A5) is a matrix representation of ( )2

p tN N linear equations. 

However, in contrast to the matrix K̂  in Eq. (12), the matrix K  has only unique entries. To 
invert Eq. (A5) and obtain K , we first decompose the matrices K and νI in Eq. (A5) into a 

set of tN column vectors: 

 ( ),1 ,2 , 1 , ,
t tc c c N c N−=K K K K K  (A7a) 

 ( ),1 ,2 , 1 , ,
t tv c c c N c N−=I I I I I  (A7b) 

Accordingly, Eq. (A5) may be rewritten as tN matrix-vector multiplications: 

 , , { 1 }.s c n c n tn N= =M K I   (A8) 

For each value of n , Eq. (A8) represents a set of 2
p tN N equations with K yN N unknowns. 

Accordingly, Eq. (A8) represents an overdetermined set of equations, which may not have an 
exact solution, and one needs to find the vectors ,c nK  for which ,S c nM K best approximates 

,c nI . To invert Eq. (A8), we therefore use the following 2  minimization: 

 , , 2
min { 1 },s c n c n tn N− =M K I   (A9) 

which may be efficiently performed by the LSQR algorithm [40] due to the sparsity of sM . 

Once all the vectors ,c nK  have been found via Eq. (A9), they are used to construct the 

kernel matrix K  via Eq. (A7a). To reconstruct the images, one may construct K  via Eq. (10) 
and then use Eq. (9). Alternatively, one may rearrange the projection data in the following 
matrix form: 
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 ( )mat 1 2 1 ,
p pN N−=p p p p p  (A10) 

and then construct the matrix mat mat=h Kp . Each column in math  represents a single back-

projected image with the size of KN and yN in the x  and y  directions, respectively, as 

illustrated in Fig. 1(b). Denoting the nth column vector of math  by mat,nh the translation and 

summation of the back-projected images may be obtained by the following equation, which is 
equivalent to the operation shown in Fig. 2: 

 ( )
1

rec mat,
0

: ,
pN

n y p y y k y
n

N N nN N N nN
−

=

= − −h h  (A11) 

where the notation ( )mat, :n i jh  represents to a column vector taken from the ith to the jth 

elements of mat,nh . 
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